
FIXED POINT THEOREMS FOR

GENERALIZED MULTIVALUED

MAPPINGS IN b-METRIC SPACE

U. Karuppiah1 and M. Gunaseelan2

1. Department of Mathematics,
St.Joseph’s College(Autonomous),

Tiruchirappalli-620 002.
E-mail:u.karuppiah@gmail.com

2. Department of Mathematics,
Sri Sankara Arts and Science College,

Enathur, Kanchipuram-631 561.
E-mail:mathsguna@yahoo.com

Abstract

In 2015,Mohamed Jleli et al[1].introduced the notion of α-ψ-contraction
of Ćirić type mappings and gave sufficient conditions for the existence
of fixed points for this class of mappings.The purpose of our paper is
to study the existence of fixed points for multivalued mappings,under
generalized α-ψ-contraction of Ćirić type ,in the setting of complete
b-metric spaces.

Key words: α∗-admissible;α-admissible;Fixed ponit.

1 Introduction

The theory of mutivalued mappings has an important role in various branches
of pure and applied mathematics because of its many applications,for in-
stance,in real and complex analysis as well as in optimal control prob-
lems.Over the year,this theory has increased its significance and hence in
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the literature there are many papers focusing on the discussion of abstract
and practical problems involving multivalued mappings.As a matter of fact
,amongst the various approaches utilized to develop this theory,one of the
most interesting is based on methods of fixed point theory ,often in view
of the constructive character of fixed point theorems,especially in its metric
branch(see,for instance ,[2]).Thus,Nadler[3] was the first author who com-
bined the notion of contraction (see condition (2)below) with multivalued
mappings by establishing the following fixed point theorem.

Theorem 1.1. (see[3]) Let (X, d)be a complete metric space and let T : X →
CL(X) be a multivalued mappings satisfying

H(Tx, Ty) ≤ kd(x, y), (1)

for all x, y ∈ X,where k is a constant such that k ∈ (0, 1) and CL(X) denotes
the family of nonempty closed subsets of X.Then T has a fixed point;that
is,there exists a point z ∈ X such that z ∈ Tz.

Later on, many authors discussed this result and gave their generaliza-
tions,extensions,and application;see for instance,[4-8].
On the other hand, the concept of metric space has been generalized in dif-
ferent directions to better cover much more general situations,arising in com-
puter science and others (see,for instance,[4,9]).Here,we deal with the notion
of triangle inequality;see Bakhtin [10] and Czerwick[11].Many researchers
followed this idea and proved various results in the b-metric setting[12-16].
In 2015,Mohamed Jleli et al[1].introduced the notion of α-ψ-contraction of
Ćirić type mappings and gave sufficient conditions for the existence of fixed
points for this class of mappings.In this paper,we study the existence of fixed
points for multivalued mappings,under generalized α-ψ-contraction of Ćirić
type,in the setting of complete b-metric spaces.Also,we consider a complete
b-metric space endowed with a partial ordering.

2 Preliminaries

Let R+ denote the set of all nonnegative real numbers and let N denote the
set of positive integers.From [10,11,18,19]we get some basic definitions,lemmas,and
notations concerning the b-metric space.

Definition 2.1. Let X be a nonempty set and let s ≥ 1 be a given real
number.A function d : X ×X → R+ is said to be a b-metric if and only if
for all x, y, z ∈ X the following conditions are satisfied :
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(1)d(x, y) = 0 if and only if x = y;
(2)d(x, y) = d(y, x);
(3)d(x, z) ≤ s[d(x, y) + d(y, z)].
Then,the triplet (X, d, s) is called a b-metric space.

It is an obvious fact that a metric space is also a b-metric space with
s = 1,but the converse is not generally true.To support this fact,we have the
following example.

Example 2.1. Consider the set X = [0, 1] endowed with the function d : X×
X → R+ defined by d(x, y) = |x − y|2 for all x, y ∈ X.Clearly,(X, d, 2) is a
b-metric space but it is not a metric space.

Let (X, d, s) be a b-metric space.The following notations are natural
deductions from their metric counterparts.
(i)A sequence {xn} ⊆ X converges to x ∈ X if limn→∞ d(xn, x) = 0.
(ii) A sequence {xn} ⊆ X is said to be a Cauchy sequence if,for every
given ε > 0,there exists n(ε) ∈ N such that d(xm, xn) < ε for all m,n ≤ n(ε).
(iii) A b-metric space (X, d, s) is said to be complete if and only if each
Cauchy sequence converges to some x ∈ X.
From the literature on b-metric spaces,we choose the following significant
example.

Example 2.2. (see[11]) Let p ∈ (0, 1).Consider the space Lp([0, 1]) of all
real functions f : [0, 1] → R such that

∫ 1
0 |f(t)|pdt < +∞,endowed with the

functional d : Lp([0, 1])× Lp([0, 1])→ R defined by

d(f, g) = (
∫ 1
0 |f(t)− g(t)|pdt)

1
p ∀ f, g ∈ Lp([0, 1]).

Then,(X, d, 2
1
p ) is a b-metric space.

Next,we collect some lemmas and notions concerning the theory of multi-
valued mappings on b-metric spaces.We recall that CB(X) denotes the class
of nonempty closed and bounded subsets of X.For A,B ∈ CB(X),define the
function H : CB(X)× CB(X)→ R+ by
H(A,B) = max{δ(A,B), δ(B,A)},
where

δ(A,B) = sup{d(a,B), a ∈ A}, δ(B,A) = sup{d(b, A), b ∈ B} (2)

with d(a,C) = inf{d(a, x), x ∈ C}
Note that H is called the Hausdorff b-metric induced by the b-metric d.
We recall the following properties from [11,14,19];see also [13] and the ref-
erences therein.
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Lemma 2.3. Let (X, d, s)be a b-metric space.For any A,B,C ∈ CB(X)
and any x, y ∈ X,one has the following: (i)d(x,B) ≤ d(x, b),for any b ∈ B;
(ii) δ(A,B) ≤ H(A,B);
(iii) d(x,B) ≤ H(A,B),for any x ∈ A;
(iv) H(A,A) = 0;
(v)H(A,B) = H(B,A);
(vi)H(A,C) ≤ s(H(A,B) +H(B,C));
(vii)d(x,A) ≤ s(d(x, y) + d(y,A)).

Remark 2.4. The function H : CL(X) × CL(X) → R+ is a generalized
Hausdorff b-metric; that is,H(A,B) = +∞ if max{δ(A,B), δ(B,A)} does
not exist.

Lemma 2.5. Let (X, d, s) be a b-metric space.For A ∈ CL(X)and x ∈
X,one has
d(x,A) = 0⇔ x ∈ Ā = A,
where Ā denotes the closure of the set A.

Lemma 2.6. Let (X, d, s) be a b-metric space and A,B ∈ CL(X).Then,for
each h > 1 and for each a ∈ A there exists b(a) ∈ B such that d(a, b(a)) <
hH(A,B)if H(A,B) > 0.

Finally,to prove our results we need the following class of functions.
Let s ≥ 1 be a real number ;we denote by Ψs the family of strictly increasing
functions ψ : [0,+∞)→ [0,+∞) such that∑+∞

n=1 s
nψn(t) < +∞ for each t > 0,

where ψn denotes nth iterate of the function ψ.It is well known that ψ(t) < t
for all t > 0.An example of function ψ ∈ Ψs is given by ψ(t) = ct

s for all
t ≥ 0,where c ∈ (0, 1).

Definition 2.2. A multivalued mappings T : X → CL(X) is said to be α-
admissible,with respect to a function α : X × X → [0,∞),for each x ∈ X
and y ∈ Tx with α(x, y) ≥ 1,we have α(y, z) ≥ 1 for all z ∈ Ty.

Definition 2.3. Let (X, d, s) be a b-metric space and let δ(., .) be as in
(4).Then ,a multivalued mappings F : X → CL(X) is said to be h-upper
semicontinuous at x0 ∈ X,if the function
δ(Fx, Fx0) := sup{d(y, Fx0) : y ∈ Fx}
is continuous at x0.Clearly,F is said to be h-upper semicontinuous,whenever
F is h-upper semicontinuous at every x0 ∈ X.

Definition 2.4. [1] Let (X, d, s) be a b-metric space.A multivalued mappings
T : X → CL(X) is said to be an α-ψ-contraction of Ćirić type if there exist
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a function α : X × X → [0,+∞) and a function ψ ∈ Ψs such that,for all
x, y ∈ X with α(x, y) ≥ 1,the following condition holds
H(Tx, Ty) ≤ ψ(M(x, y)),
where
M(x, y) = max{d(x, y), d(x, Tx), d(y, Ty), 1

2s{d(x, Ty) + d(y, Tx)}}.

Theorem 2.7. [1] Let (X, d, s) be a complete b-metric space and let T : X →
CL(X).Assume that there exist two functions α : X × X → [0,+∞)and
ψ ∈ Ψs such that T is an α -ψcontraction of Ćirić type.Also,suppose that
the following conditions are satisfied:
(i) T is an α-admissible multivalued mappings;
(ii) there exist x0 ∈ X and x1 ∈ Tx0 such that α(x0, x1) ≥ 1;
(iii) T is h-upper semicontinuous.
Then T has a fixed point.

Theorem 2.8. [1] Let (X, d, s) be a complete b-metric space and let T : X →
CL(X).Assume that there exist two functions α : X × X → [0,+∞)and
ψ ∈ Ψs such that T is an α -ψcontraction of Ćirić type.Also,suppose that
the following conditions are satisfied:
(i) T is an α-admissible multivalued mappings;
(ii) there exist x0 ∈ X and x1 ∈ Tx0 such that α(x0, x1) ≥ 1;
(iii) for a sequence {xn} in X with α(xn, Txn+1) ≥ 1 for all n ∈ N ∪ {0}
and xn → x ∈ X,then α(xn, x) ≥ 1 for all n ∈ N ∪ {0}.
If ψ(t) < t

s for all t > 0, then T has a fixed point.

In this paper,we introduce the notion of generalized α-ψ-contraction of
Ćirić type mappings and to generalize the above results.
We introduce the concept of generalized α-ψ-contraction of Ćirić type map-
pings as follows.

Definition 2.5. Let (X, d, s) be a b-metric space.A multivalued mappings
T : X → CL(X) is said to be an generalized α-ψ-contraction of Ćirić type
if there exist a function α : X ×X → [0,+∞) and a function ψ ∈ Ψs such
that,for all x, y ∈ X with α(x, y) ≥ 1,the following condition holds

H(Tx, Ty) ≤ ψ(M(x, y)) + Ld(y, Tx), (3)

where,L ≥ 0 and

M(x, y) = max{d(x, y),
d(x, Tx)d(y, Ty)

d(x, y)
,

1

2s
{d(x, Ty) + d(y, Tx)}}. (4)
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3 Main results

Theorem 3.1. Let (X, d, s) be a complete b-metric space and let T : X →
CL(X).Assume that there exist two functions α : X ×X → [0,+∞)and ψ ∈
Ψs such that T is an generalized α -ψcontraction of Ćirić type.Also,suppose
that the following conditions are satisfied:
(i) T is an α-admissible multivalued mappings;
(ii) there exist x0 ∈ X and x1 ∈ Tx0 such that α(x0, x1) ≥ 1;
(iii) T is h-upper semicontinuous.
Then T has a fixed point.

Proof. By condition (ii) there exist x0 ∈ X and x1 ∈ Tx0 such that
α(x0, x1) ≥ 1.Clearly,if x0 = x1 or x1 ∈ Tx1,we deduce that x1 is a fixed
point of T and so we can conclude the proof.Now,we assume that x0 6= x1
and x1 /∈ Tx1 and hence d(x1, Tx1) > 0.First from(3),we deduce

0 < d(x1, Tx1)

≤ H(Tx0, Tx1)

≤ ψ(max{d(x0, x1),
d(x0, Tx0)d(x1, Tx1)

d(x0, x1)
,

1

2s
{d(x0, Tx1) + d(x1, Tx0)}}) + Ld(x1, Tx0)

≤ ψ(max{d(x0, x1),
d(x0, x1)d(x1, Tx1)

d(x0, x1)
,
1

2
{d(x0, Tx1) + d(x1, x1)}}) + Ld(x1, x1)

≤ ψ(max{d(x0, x1), d(x1, Tx1),
1

2
{d(x0, x1) + d(x1, Tx1)}})

= ψ(max{d(x0, x1), d(x1, Tx1)}).

If max{d(x0, x1), d(x1, Tx1)} = d(x1, Tx1),then we have
0 < d(x1, Tx1) ≤ ψ(d(x1, Tx1)) < d(x1, Tx1),which is a contradiction.
Thus,max{d(x0, x1), d(x1, Tx1)} = d(x0, x1),
and since ψ is strictly increasing,we have
0 < d(x1, Tx1) ≤ ψ(d(x0, x1)) < ψ(τd(x0, x1)),
where τ > 1 is a real number.This ensures that there exists x2 ∈ Tx1
(obviously,x2 6= x1) such that 0 < d(x1, x2) < ψ(τd(x0, x1)).
Since T is α-admissible,from condition (ii) and x2 ∈ Tx1,
we have α(x1, x2) ≥ 1.If x2 ∈ Tx2,then x2 is a fixed point .
Assume that x2 /∈ Tx2;that is,d(x2, Tx2) > 0.
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Next,from(3),we deduce

0 < d(x2, Tx2)

≤ H(Tx1, Tx2)

≤ ψ(max{d(x1, x2),
d(x1, Tx1)d(x2, Tx2)

d(x1, x2)
,

1

2s
{d(x1, Tx2) + d(x2, Tx1)}}) + Ld(x2, Tx1)

≤ ψ(max{d(x1, x2),
d(x1, x2)d(x2, Tx2)

d(x1, x2)
,
1

2
{d(x1, Tx2) + d(x2, x2)}}) + Ld(x2, x2)

≤ ψ(max{d(x1, x2), d(x2, Tx2),
1

2
{d(x1, x2) + d(x2, Tx2)}})

= ψ(max{d(x1, x2), d(x2, Tx2)}).

If max{d(x1, x2), d(x2, Tx2)} = d(x2, Tx2),then we have
0 < d(x2, Tx2) ≤ ψ(d(x2, Tx2)) < d(x2, Tx2),which is a contradiction.
Thus,max{d(x1, x2), d(x2, Tx2)} = d(x1, x2),and since ψ is strictly increas-
ing,we have 0 < d(x2, Tx2) ≤ ψ(d(x1, x2)) < ψ2(τd(x0, x1)).
This ensures that there exists x3 ∈ Tx2 (obviously,x3 6= x2) such that
0 < d(x2, x3) < ψ2(τd(x0, x1)).
Iterating this procedure,we construct a sequence {xn} ⊂ X such that
xn /∈ Txn, xn+1 ∈ Txn, α(xn, xn+1) ≥ 1,
0 < d(xn, Txn) ≤ d(xn, xn+1) < ψn(τd(x0, x1))∀n ∈ N.
Let m > n,Then

d(xn, xm) ≤
m−1∑
k=n

d(xk, xk+1)

≤
m−1∑
k=n

skψk(τd(x0, x1)),

and so {xn} is a Cauchy sequence in X.Hence,there exists z ∈ X such that
xn → z.
From

d(z, Tz) ≤ s[d(z, xn+1 + d(xn+1, T z))]

≤ sd(z, xn+1) + sδ(Txn, T z),

since T is h-upper semicontinuous,passing to limit as n → +∞,we get
d(z, Tz) ≤ 0,
which implies d(z, Tz) = 0.Finally,since Tz is closed we obtain that z ∈
Tz;that is,z is a fixed point of T .
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In view of Theorem 3.1,we have the following corollary.

Corollary 3.2. Let (X, d, s) be a complete b-metric space and let T : X →
CL(X).Assume that there exist two functions α : X × X → [0,+∞) and
ψ ∈ Ψs such that

α(x, y)H(Tx, Ty) ≤ ψ(M(x, y)) + Ld(y, Tx), ∀x, y ∈ X, (5)

where L ≥ 0. Also,suppose that the following conditions are satisfied:
(i) T is an α-admissible multivalued mappings;
(ii)there exists x0 ∈ X and x1 ∈ Tx0 such that α(x0, x1) ≥ 1;
(iii)T is h-upper semicontinuous.
Then T has a fixed point.

Proof. Condition (5)ensures that condition (3)holds for all x, y ∈ X with
α(x, y) ≥ 1.Thus T is an α-ψ-contraction of Ćirić type and Theorem 2.1 the
multivalued mappings T has a fixed point.

Notice that one can relax the h-upper semicontinuity hypothesis on T ,by
introducing another regularity condition as shown in the next theorem.

Theorem 3.3. Let (X, d, s) be a complete b-metric space and let T : X →
CL(X).Assume that there exist two functions α : X ×X → [0,+∞)and ψ ∈
Ψs such that T is an generalized α -ψcontraction of Ćirić type.Also,suppose
that the following conditions are satisfied:
(i) T is an α-admissible multivalued mappings;
(ii) there exist x0 ∈ X and x1 ∈ Tx0 such that α(x0, x1) ≥ 1;
(iii) for a sequence {xn} in X with α(xn, Txn+1) ≥ 1 for all n ∈ N ∪ {0}
and xn → x ∈ X,then α(xn, x) ≥ 1 for all n ∈ N ∪ {0}.
If ψ(t) < t

s for all t > 0, then T has a fixed point.

Proof. By condition (ii) there exist x0 ∈ X and x1 ∈ Tx0 such that α(x0, x1) ≥
1.Proceeding as in the proof of Theorem 3.1,we obtain a sequence {xn}
that converges to some z ∈ X such that xn /∈ Txn,xn+1 ∈ Txn and
α(xn, xn+1) ≥ 1 for all n ∈ N∪ {0}.by condition (iii),we get α(xn, z) ≥ 1for
all n ∈ N ∪ {0}.If z ∈ Tz,then the proof is concluded.Assume d(z, Tz) > 0.
From xn → z,we deduce that
(i) the sequences {d(xn, z)},{d(xn, Txn)},and {d(z, Txn)} converges to 0;
(ii) lim supn→∞ d(xn, T z) ≤ sd(z, Tz).
These facts ensure that there exists N ∈ N such that
max{d(xn, z), d(xn, Txn), d(z, Tz), 1

2s{d(xn, T z) + d(z, Txn)}} = d(z, Tz),
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for all n ∈ N with n ≥ N .Since T is an α-ψ-contraction of Ćirić type,for all
n ≥ N ,we have

d(z, Tz ≤ s[d(z, xn+1) + d(xn+1, T z)]

≤ sd(z, xn+1) + sH(Txn, T z)

≤ sd(z, xn+1) + sψ(d(z, Tz)) + sLd(z, Txn)

From ψ(t) < t
s ,letting n→ +∞,we get

d(z, Tz) ≤ sψ(d(z, Tz)) < d(z, Tz),
which implies d(z, Tz) = 0.Finally,since Tz is closed we obtain that z ∈
Tz;that is,z is a fixed point of T .

In view of Theorem 3.3,we have the following corollary.

Corollary 3.4. Let (X, d, s) be a complete b-metric space and let T : X →
CL(X).Assume that there exist two functions α : X × X → [0,+∞)and
ψ ∈ Ψs such that
α(x, y)H(Tx, Ty) ≤ ψ(M(x, y)) + Ld(y, Tx), ∀x, y ∈ X,
where L ≥ 0. .Also,suppose that the following conditions are satisfied:
(i) T is an α-admissible multivalued mappings;
(ii) there exist x0 ∈ X and x1 ∈ Tx0 such that α(x0, x1) ≥ 1;
(iii) for a sequence {xn} in X with α(xn, Txn+1) ≥ 1 for all n ∈ N ∪ {0}
and xn → x ∈ X,then α(xn, x) ≥ 1 for all n ∈ N ∪ {0}.
If ψ(t) < t

s for all t > 0, then T has a fixed point.

All results in the paper may be stated with respect to a self-mappings
T : X → X.For instance,and for our further use,we consider the following
version of Theorem 3.3.

Corollary 3.5. Let (X, d, s) be a complete b-metric space and let T : X →
CL(X).Assume that there exist two functions α : X × X → [0,+∞)and
ψ ∈ Ψs such that for all x, y ∈ X with α(x, y) ≥ 1,the following condition
holds

d(Tx, Ty) ≤ ψ(M(x, y)) + Ld(y, Tx) (6)

where L ≥ 0. Also,suppose that the following conditions are satisfied:
(i) x, y ∈ X,α(x, y) ≥ 1 implies α(Tx, Ty) ≥ 1;
(ii) there exist x0 ∈ X such that α(x0, Tx0) ≥ 1;
(iii) for a sequence {xn} in X with α(xn, Txn+1) ≥ 1 for all n ∈ N ∪ {0}
and xn → x ∈ X,then α(xn, x) ≥ 1 for all n ∈ N ∪ {0}.
If ψ(t) < t

s for all t > 0, then T has a fixed point.
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4 Fixed Point Theory in Ordered b-metric Spaces

The study of fixed points in partially ordered sets has been developed in
[16,20-22] as a useful tool for applications on matrix equations and boundary
value problems.In this section,we give some results of fixed point for gen-
eralized multivalued mappings in the settings of ordered b-metric space.In
fact,a b-metric space (X, d, s) may be naturally endowed with a partial or-
dering;that is,if (X,�)is a partially ordered set,then (X, d, s,�) is called an
ordered b-metric space.We say that x, y ∈ X are comparable if x � y or
y � x holds.Also,let A,B ⊂ X;then A � B whenever for each a ∈ A there
exists b ∈ B such that a � b.

Theorem 4.1. Let (X, d, s, ) be a complete b-metric space and let T : X →
CL(X).Assume that there exist a function ψ ∈ Ψs such that

α(x, y)H(Tx, Ty) ≤ ψ(M(x, y)) + Ld(y, Tx), (7)

∀x, y ∈ X with Tx � Ty,where L ≥ 0.
Also,suppose that the following conditions are satisfied:
(i) there exist x0 ∈ X and x1 ∈ Tx0 such that Tx0 � Tx1;
(ii) for each x ∈ X and y ∈ Tx with Tx � Ty,we have Ty � Tz for all
z ∈ Ty;
(iii) T is h-upper semicontinuous.
Then T has a fixed point.

Proof. Define the function α : X ×X → [0,+∞) by

α(x, y) =

{
1 ifTx � Ty
0 otherwise

(8)

Clearly,the multivalued mappings T is α-admissible.In fact,foe each x ∈ X
and y ∈ Tx with α(x, y) ≥ 1,we have Tx � Ty and by condition (ii) we
obtain that Ty � Tz for all z ∈ Ty.This implies that α(y, z) ≥ 1 for all
z ∈ Ty.Also ,by condition (6),T is an generalized α -ψcontraction of Ćirić
type. Thus all the hypotheses of Theorem 3.1 are satisfied and T has a fixed
point.

Also in this case,one can relax the h-upper semicontinuity hypothesis on
T ,by using condition (iii) in Theorem 3.3,Precisely we state the following
result.
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Theorem 4.2. Let (X, d, s, ) be a complete b-metric space and let T : X →
CL(X).Assume that there exist a function ψ ∈ Ψs such that

α(x, y)H(Tx, Ty) ≤ ψ(M(x, y)) + Ld(y, Tx), (9)

∀x, y ∈ X with Tx � Ty,where L ≥ 0.
Also,suppose that the following conditions are satisfied:
(i) there exist x0 ∈ X and x1 ∈ Tx0 such that Tx0 � Tx1;
(ii) for each x ∈ X and y ∈ Tx with Tx � Ty,we have Ty � Tz for all
z ∈ Ty;
(iii) for a sequence {xn} in X with Txn � Txn+1 for all n ∈ N ∪ {0} and
xn → x ∈ X,then Txn � Tx for all n ∈ N ∪ {0}.
If ψ(t) < t

s for all t > 0,then T has a fixed point.

Following the same ideas in [17],we propose the following results,which
provide an interesting alternative to partial ordering.

Theorem 4.3. Let (X, d, s, ) be a complete b-metric space,x∗ ∈ X,and let
T : X → CL(X).Assume that there exist a function ψ ∈ Ψs such that

α(x, y)H(Tx, Ty) ≤ ψ(M(x, y)) + Ld(y, Tx), (10)

∀x, y ∈ X with x∗ ∈ Tx ∩ Ty,where L ≥ 0.
Also,suppose that the following conditions are satisfied:
(i) there exist x0 ∈ X and x1 ∈ Tx0 such that x∗ ∈ Tx0 ∩ Tx1;
(ii) for each x ∈ X and y ∈ Tx with x∗ ∈ Tx ∩ Ty,we have x∗ ∈ Ty ∩ Tz
for all z ∈ Ty;
(iii) T is h-upper semicontinuous.
Then T has a fixed point.

Proof. Define the function α : X ×X → [0,+∞) by

α(x, y) =

{
1 ifx∗ ∈ Tx ∩ Ty
0 otherwise

(11)

Clearly,the multivalued mappings T is α-admissible.In fact,foe each x ∈ X
and y ∈ Tx with α(x, y) ≥ 1,we have x∗ ∈ Tx ∩ Ty and by condition (ii)
we obtain that x∗ ∈ Ty ∩ Tz for all z ∈ Ty.This implies that α(y, z) ≥ 1
for all z ∈ Ty.Also ,by condition (9),T is an generalized α -ψcontraction of
Ćirić type. Thus all the hypotheses of Theorem 3.1 are satisfied and T has
a fixed point.
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The following result is a consequence of Theorem 3.3;in order to avoid
repetition we omit the proof that is similar to the one of Theorem 4.3.

Theorem 4.4. Let (X, d, s, ) be a complete b-metric space,x∗ ∈ X,and let
T : X → CL(X).Assume that there exist a function ψ ∈ Ψs such that

α(x, y)H(Tx, Ty) ≤ ψ(M(x, y)) + Ld(y, Tx), (12)

∀x, y ∈ X with x∗ ∈ Tx ∩ Ty,where L ≥ 0.
Also,suppose that the following conditions are satisfied:
(i) there exist x0 ∈ X and x1 ∈ Tx0 such that x∗ ∈ Tx0 ∩ Tx1;
(ii) for each x ∈ X and y ∈ Tx with x∗ ∈ Tx ∩ Ty,we have x∗ ∈ Ty ∩ Tz
for all z ∈ Ty;
(iii) for a sequence {xn} in X with x∗ ∈ Txn ∩ Txn+1 for all n ∈ N ∪ {0}
and xn → x ∈ X,then x∗ ∈ Txn ∩ Tx for all n ∈ N ∪ {0}.
If ψ(t) < t

s for all t > 0,then T has a fixed point.

Example 4.5. Let X = R,and let d(x, y) = |x− y| for all x, y ∈ X
Define a mapping T : X → CL(X) by

T(x) =


{0} (x = 0)

{34x} (0 < x ≤ 1)

{16x } (x > 1).

(13)

Let

ψ(t) =

{
{45 t} (t ≥ 1)

{34 t} (0 ≤ t < 1).
(14)

Then,ψ ∈ Ψs and ψ is a strictly increasing function.
Let α : X ×X → [0,∞) be defined by

α(x, y) =

{
4 (0 ≤ x, y ≤ 1)

0 otherwise.
(15)

Obviously, condition (ii) of Theorem 3.1 is satisfied with x0 = 1
4 .

Let x, y ∈ X be such that α(x, y) ≥ 1.
Then,0 ≤ x, y ≤ 1.
If x = y,then obviously (3)is satisfied .
Let x 6= y.
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If x = 0 and 0 < y ≤ 1,then we obtain

H(Tx, Ty) = H(0,
3

4
y)

≤ 3

4
≤ ψ(d(x, Tx)) ≤ ψ(M(x, y)).

Let 0 < x ≤ 1 and 0 < y ≤ 1.
Then,we have

H(Tx, Ty) = d(Tx, Ty) = d(
3

4
x,

3

4
y)

=
3

4
|x− y| = ψ(d(x, y))

≤ ψ(M(x, y)).

Thus,(3) is satisfied.
We now show that T is αadmissible.
Let x ∈ X be given,and let y ∈ Tx be such that α(x, y) ≥ 1.
Then,0 ≤ x, y ≤ 1.
Obviously,α(y, z) ≥ 1 for all z ∈ Ty whenever 0 < y ≤ 1.
If y = 0,then Ty = {0}.Hence,for all z ∈ Ty,α(y, z) ≥ 1.
Hence,T is α-admissible.Thus,all hypotheses of Theorem 3.1 are satisfied.However,0
and 4 are the two fixed points of T .

5 Application to Integral Equation

In this section,inspired by Coesntino et al.[23] we give a typical application
of fixed point methods to the study of existence of solutions for integral
equations.Briefly,we give the background and notation.Let X = C([0, I],R)
be the set of real continuous functions defined on [0, I], where I > 0,and let
d : X ×X → [0,+∞) be given by

d(x, y) = ‖(x− y)2‖∞ = sup
t∈[0,I]

(x(t)− y(t))2, (16)

for all x, y ∈ X.Then (X, d, 2) is a complete b-metric space.
Consider the integral equation

x(t) = p(t) +

∫ I

0
S(t, u)f(u, x(u))du, (17)

where f : [0, I]×R→ R and p : [0, I]→ R are two continuous functions such
that S(t, .) ∈ L1([0, I]) for all t ∈ [0, I].
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Consider the operator T : X → X defined by

T (x)(t) = p(t) +

∫ I

0
S(t, u)f(u, x(u))du, (18)

Then we prove the following existence result.

Theorem 5.1. Let X = C([0, I],R).Suppose that the following conditions
are satisfied:
(i) there exist η : X × X → [0,+∞) and α : X × X → [0,∞) such that if
α(x, y) ≥ 1 for x, y ∈ X,then,for every u ∈ [0, I] and some λ > 0,one has

0 ≤ |f(u, x(u))− f(u, y(u))| ≤ η(x, y)|x(u)− y(u)|,

‖
∫ I

0
S(t, u)η(x, y)du‖∞ ≤

1√
3 + λ

(19)

(ii)x, y ∈ X,α(x, y) ≥ 1 implies α(Tx, Ty) ≥ 1;
(iii) there exist x0 ∈ X such that α(x0, Tx0) ≥ 1;
(iv) if {xn} is a sequence in X with α(xn, Txn+1) ≥ 1 for all n ∈ N ∪ {0}
and xn → x as n→∞,then α(xn, x) ≥ 1 for all n ∈ N ∪ {0}.
Then the integral equation (14) has a solution in X.

Proof. Clearly,any fixed point of (14) is a solution of (15).By condition (i),we
obtain

|T (x)(t)− T (y)(t)|2 = [|
∫ I

0
S(t, u)[f(u, x(u))− f(u, y(u))]du|]2

≤ [

∫ I

0
S(t, u)|f(u, x(u))− f(u, y(u))|du]2

≤ [

∫ I

0
S(t, u)η(x, y)

√
|x(u)− y(u)|2du]2

≤ [

∫ I

0
S(t, u)η(x, y)

√
‖(x− y)2‖∞du]2

= ‖(x− y)2‖∞[

∫ I

0
S(t, u)η(x, y)du]2.

Thus we have

‖(T (x)− T (y))2‖∞ ≤ ‖(x− y)2‖∞‖
∫ I

0
S(t, u)η(x, y)du‖2∞. (20)

and hence,for all x, y ∈ X,we obtain
d(T (x), T (y)) ≤ d(x,y)

3+λ ,
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which implies that (6) holds true ψ ∈ Ψ2 given by ψ(t) = t
3+λ for all

t ≥ 0.The other conditions of Corollary(3.5) are immediately satisfied and
hence the operator T has a fixed point,that is,a solution of the integral
equation(14) in X.

Remark 5.2. Notice that α : X ×X → [0,+∞) defined by

α(x, y) =

{
1 ifx � y
0 otherwise

(21)

is an easy example of function suitable for Theorem 5.1.Clearly, as X =
C([0, I],R),then we can say that x � y if and if x(t) ≤ y(t) for all t ∈
[0, I],where ≤ denotes the usual order of real numbers.In this case,condition
(ii) is satisfied by assuming that f is nondecreasing with respect to its second
variable.
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